

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

|                   | swer on the Question Paper.<br>/aterials are required. | 1 hour 15 minutes     |
|-------------------|--------------------------------------------------------|-----------------------|
| Paper 3 Extend    | led                                                    | October/November 2010 |
| BIOLOGY           |                                                        | 0610/32               |
| CENTRE<br>NUMBER  |                                                        | CANDIDATE<br>NUMBER   |
| CANDIDATE<br>NAME |                                                        |                       |

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, Candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |  |  |  |
|--------------------|--|--|--|--|
| 1                  |  |  |  |  |
| 2                  |  |  |  |  |
| 3                  |  |  |  |  |
| 4                  |  |  |  |  |
| 5                  |  |  |  |  |
| 6                  |  |  |  |  |
| Total              |  |  |  |  |

This document consists of **19** printed pages and **1** blank page.



[Turn over

For

Examiner's Use

**1** Fig. 1.1**A** shows a buttercup, *Ranunculus cymbalaria*. Fig. 1.1**B** shows details of a flower of the same plant.



Fig. 1.1

(a) Explain, using only features visible in Fig. 1.1, why *Ranunculus cymbalaria* is classified as a dicotyledonous plant rather than as a monocotyledonous plant.

[2]

Fig. 1.2 shows a transverse section through a buttercup root at the end of the cold winter  $(\mathbf{W})$  and at the end of the warm, moist summer  $(\mathbf{S})$ . At the end of the winter, the cells contain very few starch grains. At the end of the summer, most of the root cells contain many starch grains.

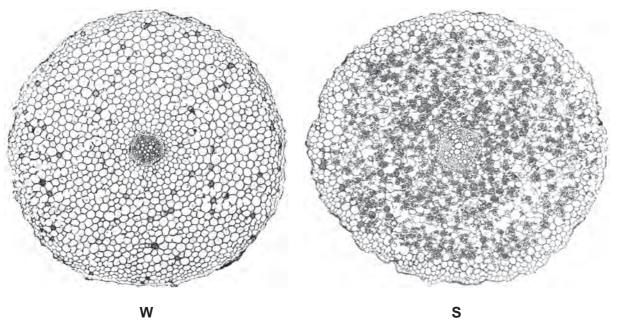


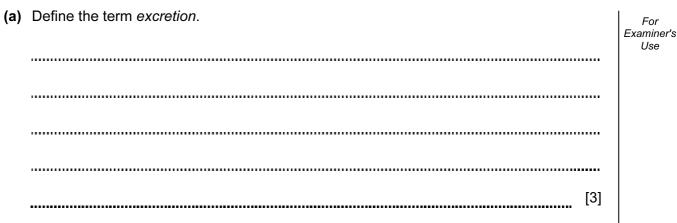

Fig. 1.2

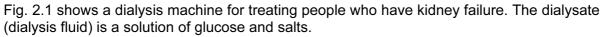
(b) Suggest why there are few starch grains in the cells of **W** compared with a large number of starch grains in the cells of **S**.

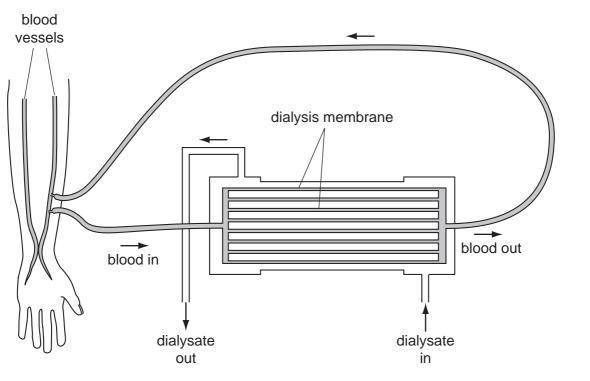
(c) Describe how enzymes in root cells synthesise starch.

| (d) | As temperature is increased, for example from 10 °C to 30 °C, enzyme activity increases. | For<br>Examiner's<br>Use |
|-----|------------------------------------------------------------------------------------------|--------------------------|
|     | Explain how increasing temperature affects enzyme activity.                              |                          |

| [2] |
|-----|
|     |


[Total: 10]


# **BLANK PAGE**


For

Use

6









- (b) Explain how, when the patient is receiving dialysis treatment
  - (i) the loss of plasma proteins and red blood cells is prevented,

| <br>    |
|---------|
| <br>[1] |

2

| (ii) | the normal glucose concentration of the blood is maintained. | For<br>Examiner's<br>Use |
|------|--------------------------------------------------------------|--------------------------|
|      |                                                              |                          |
|      | [2]                                                          |                          |

For Examiner's Use

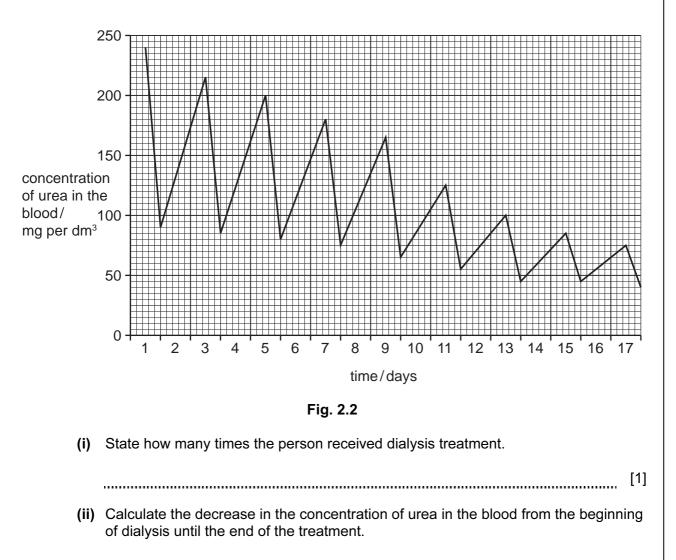




Fig. 2.2 shows how the concentration of urea in the blood changed over the 17 days.



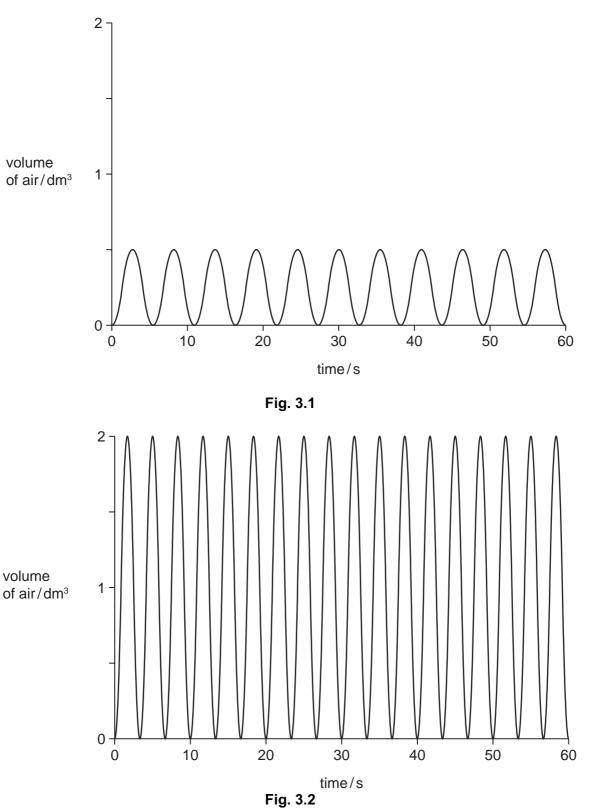
[1]

For

Examiner's Use

(iii) Describe the changes that occur in the urea concentration in the blood over the period shown in Fig. 2.2. You will gain credit for using the data in Fig. 2.2 in your answer. ..... ..... [3] (iv) Explain the changes in urea concentration in the blood as shown in Fig. 2.2. ..... ..... ..... [4] [Total: 15]

9


[Turn over

For

Use

3 (a) In the space below write a balanced chemical equation for anaerobic respiration in muscles. Examiner's ····· → ····· [2]

Some students investigated the breathing of a 16-year old male athlete. Fig. 3.1 shows the pattern of his breathing for 60 seconds when resting. Fig. 3.2 shows the pattern of his breathing while he took some exercise for 60 seconds.



For Examiner's Use

Table 3.1 shows a summary of the results obtained by the students.

### Table 3.1

|                                                              | breathing at rest | breathing during exercise |
|--------------------------------------------------------------|-------------------|---------------------------|
| volume of air breathed in with each breath / dm <sup>3</sup> | 0.5               |                           |
| rate of breathing / number of breaths per minute             | 11                |                           |
| volume of air breathed in per minute / dm <sup>3</sup>       | 5.5               |                           |

(b) Using information from Fig. 3.2, complete Table 3.1.

Write your answers in Table 3.1. [3]

(c) Explain the effect of exercise on the student's breathing.

| [5] |
|-----|

For

Use

(d) During strenuous exercise, the hormone adrenaline causes changes in the pulse rate and in the concentration of glucose in the blood. Examiner's

Explain the importance of these changes during strenuous exercise.

pulse rate ..... concentration of glucose in the blood ..... [5] [Total: 15]

| 4 |     |      | nan immunodeficiency virus (HIV) infects white blood cells. The virus is reproduced nese white blood cells. | For<br>Examiner's<br>Use |
|---|-----|------|-------------------------------------------------------------------------------------------------------------|--------------------------|
|   | (a) | De   | scribe what may happen to viruses that leave infected white blood cells.                                    |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      | [2]                                                                                                         |                          |
|   | (b) | De   | scribe the possible long-term effects of HIV on the immune system.                                          |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      | [3]                                                                                                         |                          |
|   | (c) | Peo  | ople with HIV may be treated with a variety of drugs.                                                       |                          |
|   |     | (i)  | Define the term <i>drug</i> .                                                                               |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      | [1]                                                                                                         |                          |
|   |     | (ii) | Explain why antibiotics cannot be used to control HIV.                                                      |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      |                                                                                                             |                          |
|   |     |      | [2]                                                                                                         |                          |
|   |     |      | [Total: 8]                                                                                                  |                          |

- 14
- **5** In many parts of the world, raw sewage drains into rivers. Raw sewage contains organic matter which acts as food for bacteria. The breakdown of organic matter by bacteria has an effect on the oxygen concentration and species of invertebrate animals in rivers.

Fig. 5.1 shows the changes in oxygen concentration along a river.

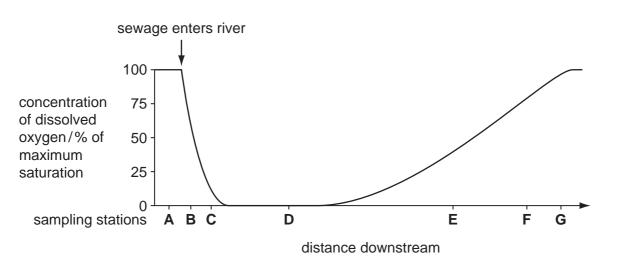





Table 5.1 shows the invertebrate animals at seven sampling stations,  ${\bf A}$  to  ${\bf G},$  along the river.

### Table 5.1

key

 ✓ invertebrate animal present

| invertebrate      | sampling stations |              |              |              |  |              |              |  |              |
|-------------------|-------------------|--------------|--------------|--------------|--|--------------|--------------|--|--------------|
| animals           |                   | В            | С            | D            |  | E            | F            |  | G            |
| stonefly nymph    | $\checkmark$      |              |              |              |  |              |              |  | $\checkmark$ |
| freshwater shrimp | $\checkmark$      |              |              |              |  |              | $\checkmark$ |  | $\checkmark$ |
| caddis fly larva  | $\checkmark$      |              |              |              |  |              | $\checkmark$ |  | $\checkmark$ |
| mayfly nymph      | $\checkmark$      | $\checkmark$ |              |              |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| midge larva       | $\checkmark$      | $\checkmark$ | $\checkmark$ |              |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| rat-tailed maggot |                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |              |              |  |              |
| water louse       | $\checkmark$      | $\checkmark$ |              |              |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| wandering snail   |                   |              |              |              |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| tubifex worm      | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |

For

Use

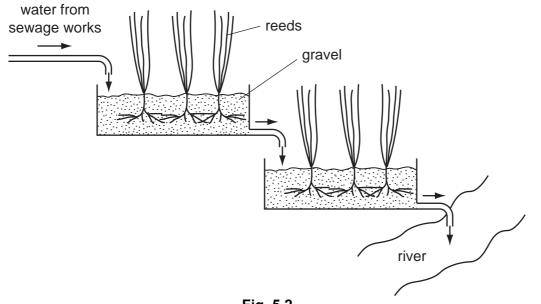
(a) (i) Describe the changes that occur to the oxygen concentration in the river as shown Examiner's in Fig. 5.1. You will gain credit for using the data in Fig. 5.1 in your answer.

[4] (ii) Name the invertebrate animal that is only found in water with the highest oxygen concentration. [1] (iii) Name the **two** invertebrate animals that tolerate the lowest oxygen concentrations. [1] ..... (iv) Suggest and explain the changes in the number of different species of invertebrate animals along the river, as shown in Table 5.1. [3]

For Examiner's Use

Sewage treatment works receive raw sewage.

This sewage contains food molecules, such as cellulose, starch, protein and fat.


(b) Explain how bacteria breakdown these nutrient molecules.

[4]

The concentration of nitrate ions is often very high in the water leaving a sewage treatment works.

In some places, the water passes through a series of reed beds as shown in Fig. 5.2.

The water leaving the reed beds and entering the river contains very low concentrations of nitrate ions.





For Examiner's

Use

(c) Explain two ways in which the concentration of nitrate ions may be reduced as the water flows through the reed beds.

[3]

(d) Some bacteria that live in reed beds release methane. Other sources of methane are cattle and flooded rice fields.

Explain the environmental consequences of an increase in the methane concentration in the atmosphere.

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      | [3]  |
| <br> | <br> | <br> |

[Total: 19]

For

(a) Define the term self-pollination. 6

|     | Examiner's<br>Use |
|-----|-------------------|
|     |                   |
|     |                   |
| [2] |                   |

Snapdragon plants have flowers with three colours: red, pink and white.

Some students investigated the inheritance of flower colour in snapdragons.

In cross 1 they cross-pollinated plants that were homozygous for red flowers with plants that were homozygous for white flowers. They collected and planted the seeds from cross 1. All of the resulting plants had pink flowers.

In cross 2 they self-pollinated all the pink-flowered plants and found that in the next generation there were red-flowered plants, white-flowered plants and pink-flowered plants.

(b) Complete the genetic diagrams to show how flower colour is inherited in snapdragon plants.

Use the symbol **I**<sup>R</sup> for the allele for red flowers and **I**<sup>W</sup> for the allele for white flowers.

| cross 1 | parental phenotypes     | red flowers | ×            | white flowers |
|---------|-------------------------|-------------|--------------|---------------|
|         | parental genotypes      |             | ×            |               |
|         | gametes                 |             |              |               |
|         |                         |             |              |               |
|         |                         |             |              |               |
|         |                         |             |              |               |
|         | offspring<br>genotypes  |             |              |               |
|         | offspring<br>phenotypes |             | pink flowers |               |
|         |                         |             |              |               |

| ross 2                  | parental phenotype | es pink flowers | × | pink flowers                                   | For               |
|-------------------------|--------------------|-----------------|---|------------------------------------------------|-------------------|
|                         | parental genotypes | S               | × |                                                | Examiner's<br>Use |
|                         | gametes            |                 |   |                                                |                   |
|                         |                    |                 |   |                                                |                   |
| offspring<br>genotype   | s                  |                 |   |                                                |                   |
| ratio of of<br>phenotyp |                    |                 |   |                                                | [4]               |
|                         |                    |                 |   | vhite-flowered plants.<br>tudent would expect. |                   |
|                         |                    | oink flowers    |   | vhite flowers                                  |                   |
|                         | genotypes          |                 | × |                                                |                   |
|                         | gametes            |                 |   |                                                |                   |
|                         |                    |                 |   |                                                |                   |
|                         |                    |                 |   |                                                |                   |
|                         |                    |                 |   |                                                |                   |
| offspring<br>genotype   | s                  |                 |   |                                                |                   |
| ratio of of<br>phenotyp |                    |                 |   |                                                | [3]               |
|                         |                    |                 |   |                                                |                   |
|                         |                    |                 |   |                                                |                   |

For

Use

(d) Explain the advantages of sexual reproduction to a species of flowering plant, such as Examiner's the snapdragon.

..... ..... ..... .....[4] [Total: 13]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.